// INSTRUCTIONS
// ------------
// Compile this code. You should see a rectangular play field of periods, with
// 3 Entity objects visible on it. The happy-face Entity moves with the "wasd"
// keys, and the club Entity moves with the "ijkl" keys. If the happy-face
// reaches the diamond Entity, the player wins. If the happy-face reaches the
// club, the player loses.
//
// Read through this code! Try to understand it before starting the assignment.
// Comment confusing lines with what you think code is doing, and experiment
// with existing code to test your understanding.
// Once you feel comfortable with this code, accomplish each of the following,
// and make sure your code compiles and runs after each step is completed.
//
// 1) Getting comfortable with the game code
// a) Implement initialization lists in Vector2, Entity, and Game (setting
// object values after a ':', between the constructor signature and body).
// Have initialization lists set initial values for each member variable.
// b) Add another Entity to the game that isn't the same location as an
// existing Entity. Use a heart icon (ASCII code 3). It should display in
// the game.
// c) Add logic that makes the club (PLAYER2) win the game if that player
// reaches the heart Entity. You may want to make new constants, like
// GOAL2, and WIN2, to follow the existing code convention.
// d) Make a new private function called "void Game::handleUserInput()", move
// the user input handling logic from Game::update() into this new
// function, and call Game::handleUserInput from Game::update.
// e) Add whitespace to the handleUserInput logic, and comment each line with
// what you understand it is doing. If you don't understand what the code
// is doing, experiment with it until you do! Do things like printing
// variables you are unsure about, and guess what output will look like.
// f) Implement the prototyped overloaded operators for Vector2. Once they
// are finished you should be able to use the alternate code for setting
// up PLAYER2 in Game::Game() in "game.cpp".
// 2) A "BlinkEntity" class
// a) Create 2 new files in your project: "blinkentity.h", and
// "blinkentity.cpp"
// b) Make a BlinkEntity class that extends Entity. Declare the class in
// "blinkentity.h" and define it's methods in "blinkentity.cpp". Your
// "blinkentity.h" file should look something like:
// #pragma once
//
// #include "entity.h"
//
// class BlinkEntity : public Entity {
// };
// c) Instead of using an Entity for the Entity marked GOAL1 in the Game
// constructor, use a BlinkEntity. You will need to create a public
// BlinkEntity constructor.
// d) Give BlinkEntity another member variable called "alternateIcon". When
// BlinkEntity calls it's update function, swap the values of "icon" and
// "alternateIcon". You won't notice a change during runtime until you add
// the virtual modifier to Entity::update().
// 3) A "WanderingEntity" class
// a) Create 2 new files in your project: "wanderingentity.h", and
// "wanderingentity.cpp"
// b) Make a WanderingEntity class that extends Entity. Declare the class in
// "wanderingentity.h" and define it's methods in "wanderingentity.cpp".
// Your "wanderingentity.h" file should look something like:
// #pragma once
//
// #include "entity.h"
//
// class WanderingEntity : public Entity {
// };
// c) Instead of using an Entity for the Entity marked PLAYER2 in the Game
// constructor, use a WanderingEntity. You will need to create a public
// WanderingEntity constructor.
// d) Create a new update method for WanderingEntity. Declare it in
// "wanderingentity.h", and define it in "wanderingentity.cpp". In the
// WanderingEntity::update() method, set the "howToMoveNext" variable
// to a random number from 0 to 3. You can use "rand() % 4" to do this in
// "wanderingentity.cpp" if you #include <cstdlib> or <stdlib.h>. After
// setting the "howToMoveNext" variable in update, call the parent class's
// updated with "Entity::update()".
// e) Add at least 2 more WanderingEntity objects in the Game. Add game logic
// will cause the player to lose if the player shares a location with any
[bookmark: _GoBack]// WanderingEntity object.
